
Memo
To: Record
From: John Gipson
Date: January 21, 1999
Re: User_Constraint

This memo describes how to use the user_constraint feature of solve. This can be
used in batch mode by including the line:
 USER_CONSTRAINTS complete_path
where complete_path is the complete_path to the program. It can be used in
interactive mode by typing "Y" in optin.

Theory
Suppose the initial normal equation are

NA = B
Here and are column vectors, and is the normal matrix. We want to constrain theA B N
solution of the normal equation. This is done for a variety of reasons.

1. The normal matrix may not be invertible as it stands, so constraints are
necessary to invert it.

2. We may have some a priori knowledge about the solution to the normal
equation.

3. The normal equation may be invertible, but the data may still be weak. For
example, if we are estimating piecewise linear clocks and atmospheres, and the
data is sparse for some period of time, we can strengthen the normal equations
by putting constraints on the variation of the clocks and atmospheres. If this is
done correctly then we won't change the estimates of the geodetic parameters,
although we will decrease their formal errors.

Any constraint has three parts:
1. The constraint vector . V

2. The strength of the constraint, which I will call .1/σ2

3. The value of the constraint, which I will call v

One way of looking at constraints is that we bias the solution vector so that theA
projection of along the constraint vector takes the value A v

V • A ≅ v
with uncertainty . Often the value is 0. For example, in the No-Net-Translationσ
constraints we constrain the sum of the station adjustments for some set of stations to
be 0.

To apply a single constraint we modify the normal equations to:

N+ 1

σ2V ⊗ V
 A = B + v

σ2V

Here is the constraint vector, is how strong we apply the constraint, and is theV 1/σ2 v
value we are constraining to. As the weight gets larger the constraint dominates the
normal equations, and we have

1

σ2(V • A)V = v

σ2V
1

σ2

The solution to this equation is with uncertainty , which is just what we want.V • A = v σ

Practise

The user_constraints feature of solve allows the user to apply an arbitrary set of
constraints, with arbitrary weights and arbitrary values. All you need to do is write a
program which generates the constraints, weights and values. In this section I describe
what is involved.

If the user_constraints feature is turned on, then:
1. The program norml writes out a file called CNSFxx in the work area. Here xx

are the users initials.

A. The first line of CNSFxx contains num_parm, 0, where num_parm is the
number of parameters.

B. The remaining lines are the names of the parameters we are solving for.

2. norml schedules the user_constraint program which:

A. Reads in CNSFxx to find the number of parameters, and their names.

B. For each constraint it generates the constraint vector, 1/sqrt(wt), and the
value. If we want to interpret 1/sqrt(wt) as the sigma then the constraint vector
should be normalized to one.

C. For each constraint this is stored in a (num_parm+2) array: (V,σ, v)

D. The set of constraint vectors is written out to the file CNSVxx in the work area.

E. CNSFxx is modifed so that the first line is num_parm, num_con where
num_con is the number of constraints we want to apply.

3. norml then

A. Reads the CNSFxx to determine the number of constraints.

B. For each constraint it modifies the normal equations according to the above
equation.

In summary, user_constraint generates a set of constraint vectors, sigmas, and values:

{Va}, {σa}, {va}

where the index a labels the constraint. Norml takes these and modifies the normal
equations to:


N+ Σ

a

1

σa
2Va ⊗ Va


 A = B + Σ

a

va

σa
2Va

The directory /data18/mk3/src/solve/jmg_con contains a number of user_constraint
programs. All of these use the routine usercon.f plus some other subroutine, for
example hfeopcon.f. The first of these usercon.f takes care of reading and writing the
CNSFxx and CNSVxx files. The second file computes the actual constraint.

Example

An example of the above can be found via anonymous ftp in the directory
gemini.gsfc.nasa.gov://pub/misc/jmg/xpos_con. This directory contains three files:
usercon.f, xposcon.f and makefile. usercon.f takes care of all of the bookkeeping.
xposcon.f imposes constraints on the X-component of the station position. The
constraint is that the X-adjustment is 100 mm, with strength . Of course howσ = 1mm
close the solution gets to these values depends on how strong the initial data is. The
makefile will make the program /home/tmp/XPOSCON.

